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Abstract. In most supersymmetric theories charginos, χ̃±
1,2, belong to the class of the lightest supersym-

metric particles. The chargino system can be reconstructed completely in e+e− collider experiments:
e+e− → χ̃+

i χ̃−
j [i, j = 1, 2]. By measuring the total cross sections and the asymmetries with polarized

beams, the chargino masses and the gaugino–higgsino mixing angles of these states can be determined
accurately. If only the lightest charginos χ̃±

1 are kinematically accessible in a first phase of the machine,
transverse beam polarization or the measurement of chargino polarization in the final state is needed to
determine the mixing angles. From these observables the fundamental SUSY parameters can be derived:
the SU(2) gaugino mass M2, the modulus and the cosine of the CP–violating phase of the higgsino mass
parameter µ, and tanβ = v2/v1, the ratio of the vacuum expectation values of the two neutral Higgs
doublet fields. The remaining two–fold ambiguity of the phase can be resolved by measuring the normal
polarization of the charginos. Sum rules of the cross sections can be exploited to investigate the closure of
the two–chargino system.

1 Introduction

In supersymmetric theories, the spin-1/2 partners of the
W± gauge bosons and the charged Higgs bosons, W̃±
and H̃±, mix to form chargino mass eigenstates χ̃±

1,2. The
chargino mass matrix [1] in the (W̃−, H̃−) basis

MC =

(
M2

√
2mW cosβ√

2mW sinβ µ

)
(1)

is built up by the fundamental supersymmetry (SUSY) pa-
rameters: the SU(2) gaugino mass M2, the higgsino mass
parameter µ, and the ratio tanβ = v2/v1 of the vacuum
expectation values of the two neutral Higgs fields which
break the electroweak symmetry. In CP–noninvariant the-
ories, the mass parameters are complex [1]. However, by
reparametrization of the fields, M2 can be assumed real
and positive without loss of generality so that the only
non–trivial reparametrization–invariant phase may be at-
tributed to µ:

µ = |µ| eiΦµ with 0 ≤ Φµ ≤ 2π (2)

Once charginos will have been discovered, the experimen-
tal analysis of their properties in production and decay
mechanisms will reveal the basic structure of the underly-
ing supersymmetric theory.

Charginos are produced in e+e− collisions, either in
diagonal or in mixed pairs [2]-[11]:

e+e− → χ̃+
i χ̃−

j [ i, j = 1, 2 ]

Depending on the collider energy and the chargino masses,
the following scenarios will be analyzed:

(i) If the energy in the first phase of the machine is only
sufficient to produce the light chargino pair χ̃+

1 χ̃
−
1 , the un-

derlying fundamental parameters, up to at most two–fold
ambiguity, can be extracted from the mass mχ̃±

1
, the total

production cross section and the measurement of longitu-
dinal left–right and transverse asymmetries. Alternatively
to beam polarization, the polarization of the charginos in
the final state may be exploited. The χ̃± polarization vec-
tors and χ̃+–χ̃− spin–spin correlation tensor can be deter-
mined from the decay distributions of the charginos. We
will assume that the charginos decay into the lightest neu-
tralino χ̃0

1, which is taken to be stable, and a pair of quarks
and antiquarks or leptons: χ̃±

1 → χ̃0
1 ff̄

′. No detailed in-
formation on the decay dynamics, nor on the structure of
the neutralino, is needed to carry out the spin analysis
[12].
(ii) If the collider energy is sufficient to produce the two
chargino states in pairs, the underlying fundamental SUSY
parameters {M2, |µ|, cosΦµ, tanβ} can be extracted un-
ambiguously from the masses mχ̃±

1,2
, the total production
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cross sections, and the left–right (LR) asymmetries with
polarized electron beams, while the phase Φµ is deter-
mined up to a two–fold ambiguity Φµ ↔ 2π − Φµ. As
shown in [13], this ambiguity can be resolved by mea-
suring manifestly CP–noninvariant observables associated
with the normal polarization of the charginos.

These analyses of the chargino sector are independent
of the structure of the neutralino sector [14]. While the
structure of the chargino sector in large classes of super-
symmetric theories is isomorphic to the minimal super-
symmetric standard model (MSSM), we expect the neu-
tralino sector to be more complex in general, reflecting the
complexity of a Higgs sector extended beyond the minimal
form.

The analysis will be based strictly on low–energy
SUSY. To clarify the analytical structure, the reconstruc-
tion of the basic SUSY parameters presented here is car-
ried out at the tree level; the small loop corrections [15]
include parameters from other sectors of the MSSM de-
manding iterative higher–order expansions in global anal-
yses at the very end. Once these basic parameters will have
been extracted experimentally, they may be confronted,
for instance, with the ensemble of relations predicted in
Grand Unified Theories.

In this report we present a coherent and comprehensive
description of the chargino system at e+e− linear collid-
ers, based on scattered elements discussed earlier in [5]–
[7]. The report will be divided into six parts. In Sect. 2
we recapitulate the central elements of the mixing for-
malism for the charged gauginos and higgsinos. In Sect. 3
the cross sections for chargino production, the left–right
asymmetries, and the polarization vectors of the charginos
are given. In Sect. 4 we describe a phenomenological anal-
ysis of the light χ̃±

1 states based on a specific scenario
to exemplify the procedure for extracting the fundamen-
tal SUSY parameters in a model–independent way. In
Sect. 5 the analysis is extended to the complete set χ̃±

1,2 of
chargino states, leading to an unambiguous determination
of the SU(2) gaugino parameters. Conclusions are given in
Sect. 6.

2 Mixing formalism

In the MSSM and many of its extensions, the two
charginos χ̃±

1,2 are mixtures of the charged SU(2) gauginos
and higgsinos. As a consequence of possible field redefini-
tions, the parameters tanβ and M2 can be chosen real
and positive. Since the chargino mass matrix MC is not
symmetric, two different unitary matrices acting on the
left– and right–chiral (W̃ , H̃)L,R two–component states

UL,R

(
W̃−

H̃−

)
L,R

=

(
χ̃−

1

χ̃−
2

)
L,R

(3)

are needed to diagonalize the matrix (1). The unitary ma-
trices UL and UR can be parameterized in the following

way [13]:

UL =

(
cosφL e−iβL sinφL

−eiβL sinφL cosφL

)

UR =

(
eiγ1 0
0 eiγ2

)(
cosφR e−iβR sinφR

−eiβR sinφR cosφR

)
(4)

The mass eigenvalues m2
χ̃±

1,2
are given by

m2
χ̃±

1,2
=

1
2
[
M2

2 + |µ|2 + 2m2
W ∓∆C

]
(5)

with ∆C involving the phase Φµ:

∆C =
[
(M2

2 − |µ|2)2 + 4m4
W cos2 2β + 4m2

W (M2
2 + |µ|2)

+8m2
WM2|µ| sin 2β cosΦµ

]1/2
(6)

The quantity ∆C determines the difference of the two
chargino masses:∆C = m2

χ̃±
2

−m2
χ̃±

1
. The four phase angles

{βL, βR, γ1, γ2} are not independent but can be expressed
in terms of the invariant angle Φµ:

tanβL = − sinΦµ

cosΦµ + M2
|µ| cotβ

tanβR = +
sinΦµ

cosΦµ + M2
|µ| tanβ

tan γ1 = +
sinΦµ

cosΦµ +
M2[m2(χ̃±

1 )−|µ|2]
|µ|m2

W
sin 2β

tan γ2 = − sinΦµ

cosΦµ + M2m2
W

sin 2β

|µ|[m2(χ̃±
2 )−M2

2 ]

(7)

All four phase angles vanish in CP–invariant theories for
which Φµ = 0 or π. The rotation angles φL and φR satisfy
the relations:

cos 2φL,R = − [M2
2 − |µ|2 ∓ 2m2

W cos 2β
]
/∆C

sin 2φL,R = −2mW

[
M2

2 + |µ|2 ± (M2
2 − |µ|2) cos 2β

+2M2|µ| sin 2β cosΦµ]1/2
/∆C (8)

The two rotation angles φL,R and the phase angles
{βL, βR, γ1, γ2} define the couplings of the chargino–
chargino–Z vertices:

〈χ̃−
1L|Z|χ̃−

1L〉 = −gW

cW

[
s2W − 3

4
− 1

4
cos 2φL

]

〈χ̃−
1R|Z|χ̃−

1R〉 = −gW

cW

[
s2W − 3

4
− 1

4
cos 2φR

]

〈χ̃−
1L|Z|χ̃−

2L〉 = +
gW

4cW
e−iβL sin 2φL

〈χ̃−
1R|Z|χ̃−

2R〉 = +
gW

4cW
e−i(βR−γ1+γ2) sin 2φR

〈χ̃−
2L|Z|χ̃−

2L〉 = −gW

cW

[
s2W − 3

4
+

1
4

cos 2φL

]

〈χ̃−
2R|Z|χ̃−

2R〉 = −gW

cW

[
s2W − 3

4
+

1
4

cos 2φR

]
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Fig. 1. The three mechanisms contributing to the production
of chargino pairs χ̃−

i χ̃+
j in e+e− collisions

and the electron–sneutrino–chargino vertices:

〈χ̃−
1R|ν̃|e−

L 〉 = −gW̃ eiγ1 cosφR

〈χ̃−
2R|ν̃|e−

L 〉 = +gW̃ ei(βR+γ2) sinφR (9)

with s2W = 1 − c2W ≡ sin2 θW denoting the electroweak
mixing angle. gW and gW̃ are the eνW gauge coupling and
the eν̃W̃ Yukawa coupling, respectively. They are identical
in supersymmetric theories:

gW̃ = gW = e/sW (10)

Since the coupling to the higgsino component, which is
proportional to the electron mass, can be neglected in
the sneutrino vertex, the sneutrino couples only to left–
handed electrons. The diagonal and L/R symmetric
photon–chargino vertices are as usual

〈χ̃−
i |γ|χ̃−

i 〉 = e (11)

CP–violating effects are manifest only in mixed χ̃1χ̃2 pairs.
Conversely, the fundamental SUSY parameters M2,

|µ|, tanβ and the phase parameter cosΦµ can be extracted
from the chargino χ̃±

1,2 parameters: the masses mχ̃±
1,2

and
the two mixing angles φL and φR of the left– and right–
chiral components of the wave function (see Sect. 5).

3 Chargino production in e+e− collisions

The production of chargino pairs at e+e− colliders is based
on three mechanisms: s–channel γ and Z exchanges, and
t–channel ν̃e exchange, cf. Fig. 1. The transition matrix
element, after a Fierz transformation of the ν̃e–exchange
amplitude,

T [e+e− → χ̃−
i χ̃

+
j ] =

e2

s
Qαβ

[
v̄(e+)γµPαu(e−)

]
× [ū(χ̃−

i )γµPβv(χ̃+
j )
]

(12)

can be expressed in terms of four bilinear charges, defined
by the chiralities α, β = L,R of the associated lepton and
chargino currents. After introducing the following nota-
tion,

DL = 1 +
DZ

s2W c2W

(
s2W − 1

2

)(
s2W − 3

4

)

FL =
DZ

4s2W c2W

(
s2W − 1

2

)

DR = 1 +
DZ

c2W

(
s2W − 3

4

)

FR =
DZ

4c2W
(13)

and

D′
L = DL +

(
gW̃

gW

)2
Dν̃

4s2W

F ′
L = FL −

(
gW̃

gW

)2
Dν̃

4s2W
(14)

the four bilinear charges Qαβ are linear in the mixing pa-
rameters cos 2φL,R and sin 2φL,R; for the diagonal χ̃−

1 χ̃
+
1 ,

χ̃−
2 χ̃

+
2 modes and the mixed mode χ̃−

1 χ̃
+
2 we find:

{11}/{22} : QLL = DL ∓ FL cos 2φL

QRL = DR ∓ FR cos 2φL

QLR = D′
L ∓ F ′

L cos 2φR

QRR = DR ∓ FR cos 2φR (15)

{12}/{21} : QLL = FL e∓iβL sin 2φL

QRL = FR e∓iβL sin 2φL

QLR = F ′
L e∓i(βR−γ1+γ2) sin 2φR

QRR = FR e∓i(βR−γ1+γ2) sin 2φR (16)

The first index in Qαβ refers to the chirality of the e±
current, the second index to the chirality of the χ̃± cur-
rent. The ν̃ exchange affects only the LR chirality charge
QLR while all other amplitudes are built up by γ and/or
Z exchanges only. The first term in DL,R is generated by
the γ exchange; DZ = s/(s − m2

Z + imZΓZ) denotes the
Z propagator and Dν̃ = s/(t−m2

ν̃) the ν̃ propagator with
momentum transfer t. The non–zero Z width can in gen-
eral be neglected for the energies considered in the present
analysis so that the charges are rendered complex in the
Born approximation only through the CP–noninvariant
phase.

For the sake of convenience we introduce eight quar-
tic charges for each of the production processes of the
diagonal and mixed chargino pairs, respectively. These
charges [16] correspond to independent helicity amplitudes
which describe the chargino production processes for po-
larized electrons/positrons with negligible lepton masses.
Expressed in terms of bilinear charges they are collected
in Table 1, including the transformation properties under
P and CP.

The charges Q1 to Q5 are manifestly parity–even, Q′
1

to Q′
3 are parity–odd. The charges Q1 to Q3, Q5, and

Q′
1 to Q′

3 are CP–invariant1. Q4 changes sign under CP
transformations2, yet depends only on one combination

1 When expressed in terms of the fundamental SUSY param-
eters, these charges do depend nevertheless on cosΦµ indirectly
through cos 2φL,R, in the same way as the χ̃±

1,2 masses depend
indirectly on this parameter.

2 The P–odd and CP–even/CP–odd counterparts to Q5/Q4,
which carry a negative sign between the corresponding L and R
components, do not affect the observables under consideration.
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Table 1. The independent quartic charges of the chargino sys-
tem, the measurement of which determines the chargino mass
matrix

P CP Quartic charges

even even Q1 = 1
4

[
|QRR|2 + |QLL|2 + |QRL|2 + |QLR|2

]
Q2 = 1

2Re [QRRQ∗
RL + QLLQ∗

LR]

Q3 = 1
4

[
|QRR|2 + |QLL|2 − |QRL|2 − |QLR|2

]
Q5 = 1

2Re [QLRQ∗
RR + QLLQ∗

RL]

odd Q4 = 1
2 Im [QRRQ∗

RL + QLLQ∗
LR]

odd even Q′
1 = 1

4

[
|QRR|2 + |QRL|2 − |QLR|2 − |QLL|2

]
Q′

2 = 1
2Re [QRRQ∗

RL − QLLQ∗
LR]

Q′
3 = 1

4

[
|QRR|2 + |QLR|2 − |QRL|2 − |QLL|2

]

(βL − βR + γ1 − γ2) of the CP angles. The CP invariance
of Q2 and Q′

2 can easily be proved by noting that

2mχ̃±
1
mχ̃±

2
cos(βL − βR + γ1 − γ2) sin 2φL sin 2φR

= (m2
χ̃±

1
+m2

χ̃±
2
) (1 − cos 2φL cos 2φR) − 4m2

W (17)

Therefore, all the production cross sections σ[e+e− →
χ̃+

i χ̃
−
j ] for any combination of pairs χ̃+

i χ̃
−
j depend only on

cos 2φL and cos 2φR apart from the chargino masses, the
sneutrino mass and the Yukawa couplings. For longitudi-
nally–polarized electron beams, the sums and differences
of the quartic charges are restricted to either L or R com-
ponents (first index) of the e± currents.

Defining the χ̃−
i production angle with respect to the

electron flight–direction by the polar angle Θ and the az-
imuthal angle Φ with respect to the electron transverse
polarization, the helicity amplitudes can be derived from
(12). While electron and positron helicities are opposite
to each other in all amplitudes, the χ̃−

i and χ̃+
j helicities

are in general not correlated due to the non–zero masses
of the particles; amplitudes with equal χ̃−

i and χ̃+
j helic-

ities are reduced only to order ∝ mχ̃±
i,j
/
√
s for asymp-

totic energies. The helicity amplitudes may be expressed
as Tij(σ;λi, λj) = 2πα eiσΦ〈σ;λiλj〉, denoting the electron
helicity by the first index σ, the χ̃−

i and χ̃+
j helicities by

the remaining two indices, λi and λj , respectively. The
explicit form of the helicity amplitudes 〈σ;λiλj〉 can be
found in [6].

3.1 Production cross sections

Since the gaugino and higgsino interactions depend on the
chirality of the states, the polarized electron and positron
beams are powerful tools to reveal the composition of
charginos. To describe the electron and positron polar-
izations, the reference frame must be fixed. The electron–

momentum direction will define the z–axis and the elec-
tron transverse polarization–vector the x–axis. The az-
imuthal angle of the transverse polarization–vector of the
positron is called η with respect to the x–axis. In this
notation, the polarized differential cross section is given
in terms of the electron and positron polarization vectors
P=(PT , 0, PL) and P̄=(P̄T cos η, P̄T sin η,−P̄L) by

dσ
dΩ

=
α2

16s
λ1/2

[
(1 − PLP̄L)Σunp + (PL − P̄L)ΣLL

+PT P̄T cos(2Φ− η)ΣTT

]
(18)

with the coefficients Σunp, ΣLL, ΣTT depending only on
the polar angle Θ, but not on the azimuthal angle Φ any
more; λ = [1 − (µi + µj)2][1 − (µi − µj)2] is the two–body
phase space function, and µ2

i = m2
χ̃±

i

/s. The coefficients
Σunp, ΣLL, and ΣTT can be expressed in terms of the
quartic charges:

Σunp = 4
{[

1 − (µ2
i − µ2

j )
2 + λ cos2Θ

]
Q1

+4µiµjQ2 + 2λ1/2Q3 cosΘ
}

ΣLL = 4
{[

1 − (µ2
i − µ2

j )
2 + λ cos2Θ

]
Q′

1

+4µiµjQ
′
2 + 2λ1/2Q′

3 cosΘ
}

ΣTT = −4λ sin2Θ Q5 (19)

If the production angles could be measured unambigu-
ously on an event–by–event basis, the quartic charges
could be extracted directly from the angular dependence
of the cross section at a single energy. However, since
charginos decay into the invisible lightest neutralinos and
SM fermion pairs, the production angles cannot be deter-
mined completely on an event–by–event basis. The trans-
verse distribution can be extracted by using an appropri-
ate weight function for the azimuthal angle Φ. This leads
us to the following integrated polarization–dependent
cross sections as physical observables:

σR =
∫

dΩ
dσ
dΩ

[
PL = −P̄L = +1

]
σL =

∫
dΩ

dσ
dΩ

[
PL = −P̄L = −1

]
σT =

∫
dΩ

(
cos 2Φ
π

)
dσ
dΩ

[
PT = P̄T = 1; η = π

]
(20)

As a result, nine independent physical observables can be
constructed at a given c.m. energy by means of beam po-
larization in the three production processes; three in each
mode {ij} = {11}, {12} and {22}.

3.2 Chargino polarization and spin correlations

If the lepton beams are not polarized, the chiral structure
of the charginos can be inferred from the polarization of
the χ̃−

i χ̃
+
j pairs produced in e+e− annihilation.
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The polarization vector .P = (PT ,PN ,PL) is defined in
the rest frame of the particle χ̃−

i . PL denotes the compo-
nent parallel to the χ̃−

i flight direction in the c.m. frame,
PT the transverse component in the production plane, and
PN the component normal to the production plane. The
longitudinal and transverse components of the χ̃−

i polar-
ization vector can easily be expressed in terms of the quar-
tic charges:

PL = 4
{
2(1 − µ2

i − µ2
j ) cosΘ Q′

1 + 4µiµj cosΘ Q′
2

+λ1/2[1 + cos2 Θ − (µ2
i − µ2

j )]Q
′
3

}
/N

PT = −8 sinΘ
{
[(1 − µ2

i + µ2
j )Q′

1 + λ1/2 Q′
3 cosΘ]µi

+(1 + µ2
i − µ2

j )µj Q′
2

}
/N

PN = 8λ1/2µj sinΘ Q4/N (21)

with the normalization N given by

N = 4
{[

1 − (µ2
i − µ2

j )
2 + λ cos2Θ

]
Q1

+4µiµjQ2 + 2λ1/2Q3 cosΘ
}

(22)

The normal component PN can only be generated by
complex production amplitudes. Non-zero phases are
present in the fundamental supersymmetric parameters
if CP is broken in the supersymmetric interaction [1].
Also, the non–zero width of the Z boson and loop cor-
rections generate non–trivial phases; however, the width
effect is negligible for high energies and the effects due to
radiative corrections are small. Neglecting loops and the
small Z–width, the normal χ̃−

1 and χ̃+
1 polarizations in

e+e− → χ̃−
1 χ̃

+
1 are zero since the χ̃1χ̃1γ and χ̃1χ̃1Z ver-

tices are real even for non-zero phases in the chargino mass
matrix, and the sneutrino–exchange amplitude is real, too.
The same holds true for χ̃−

2 χ̃
+
2 production. Only for non-

diagonal χ̃−
1 χ̃

+
2 /χ̃

−
2 χ̃

+
1 pairs the amplitudes are complex

giving rise to a non–zero CP–violating normal chargino
polarization PN with

PN [χ̃−
1,2] = ±4λ1/2µ2,1

(
F 2

R − FLF
′
L

)
sinΘ sin 2φL

× sin 2φR sin(βL − βR + γ1 − γ2)/N (23)

Below, we will concentrate on the production of the
lightest charginos. The direct measurement of chargino po-
larization would provide detailed information on the three
quartic charges Q′

1, Q
′
2, Q

′
3. However, the polarization of

charginos can only be determined indirectly from angular
distribution of decay products provided the chargino de-
cay dynamics is known. Complementary information can
be obtained from the observation of spin–spin correlations.
Since they are reflected in the angular correlations be-
tween the χ̃−

1 and χ̃+
1 decay products, some of them are

experimentally accessible directly. Moreover, taking suit-
able combinations of polarization and spin–spin correla-
tions, any dependence on the specific parameters of the
chargino decay mechanisms can be eliminated.

The polarization and spin–spin correlations of the
charginos are encoded in the angular distributions of the
decay products. Assuming the neutralino χ̃0

1 to be the

lightest supersymmetric particle, several mechanisms con-
tribute to the decay of the chargino χ̃±

1 :

χ̃±
1 → χ̃0

1 + ff̄ ′ [f, f ′ = l, ν, q]

Choosing the χ̃±
1 flight direction as quantization axis, the

polar angles of the ff̄ ′ decay systems in the χ̃−
1 /χ̃

+
1 rest

frames are defined as θ∗ and θ̄∗, respectively, and the cor-
responding azimuthal angles with respect to the produc-
tion plane by φ∗ and φ̄∗. The spin analysis–powers κ and
κ̄ are the coefficients of those parts of the χ̃−

1 and χ̃+
1 spin–

density matrices which are different from the unit matrix.
The κ’s are built up by the decay form factors. In many
scenarios typical numerical values of κ’s are of the order of
a few 10−1. For the subsequent analysis they need not be
determined in detail; it is enough to verify experimentally
that they are sufficiently large.

Integrating out the unobserved production angle Θ of
the charginos and the invariant masses of the final–state
quark or leptonic systems fif̄j , the differential distribution
can be written in terms of sixteen independent angular
parts:

dσ
d cos θ∗dφ∗d cos θ̄∗dφ̄∗ ∼ Σunpol

+cos θ∗κP + cos θ̄∗κ̄ P̄
+cos θ∗ cos θ̄∗κκ̄Q
+sin θ∗ sin θ̄∗ cos(φ∗ + φ̄∗)κκ̄Y + . . . (24)

Σunpol is the integrated cross section summed over
chargino polarizations; it can be expressed in terms of the
quartic charges Q1, Q2, Q3 in analogy to (19):

Σunpol = 4
∫

d cosΘ
{
(1 + β2 cos2Θ)Q1

+(1 − β2)Q2 + 2β cosΘQ3
}

(25)

where β =
√

1 − 4m2
χ̃±

1
/s is the χ̃±

1 velocity in the c.m.

frame. Among the polarization vectors, only the integrated
longitudinal components are useful in the present context,
being proportional to

P = 4
∫

d cosΘ
{
(1 + β2) cosΘQ′

1

+4(1 − β2) cosΘQ′
2 + (1 + cos2Θ)β Q′

3
}

(26)

for χ̃−
1 and P̄ for χ̃+

1 correspondingly. The spin correla-
tion Q measures the difference between the cross sections
for like–sign and unlike–sign χ̃−

1 and χ̃+
1 helicities; Y mea-

sures the interference between the amplitudes for positive
and negative helicities of both the charginos. They can be
expressed in terms of the quartic charges Q1 to Q3 as

Q = −4
∫

d cosΘ
[
(β2 + cos2Θ)Q1

+(1 − β2) cos2ΘQ2 + 2β cosΘQ3
]

Y = −2
∫

d cosΘ(1 − β2) [Q1 +Q2] sin2Θ (27)
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The terms introduced explicitly in (24) are particularly
interesting as they can be measured directly in terms of
laboratory observables as follows.

The decay angles {θ∗, φ∗} and {θ̄∗, φ̄∗}, which are used
to measure the χ̃±

1 chiralities, are defined in the rest frame
of the charginos χ̃−

1 and χ̃+
1 , respectively. Since two invis-

ible neutralinos are present in the final state, they can-
not be reconstructed completely. However, the longitudi-
nal components and the inner product of the transverse
components can be reconstructed3 from the momenta and
energies measured in the laboratory frame (see e.g. [17,5]),

cos θ∗ =
1

β| .p∗|

(
E

γ
− E∗

)
,

cos θ̄∗ =
1

β| .̄p∗|

(
Ē

γ
− Ē∗

)

sin θ∗ sin θ̄∗ cos(φ∗ + φ̄∗) =
|.p||.̄p|

| .p∗|| .̄p∗| cosϑ

+
(E − E∗/γ)

(
Ē − Ē∗/γ

)
β2| .p∗|| .̄p∗| (28)

where γ =
√
s/2mχ̃±

1
. E(Ē) and E∗(Ē∗) are the energies

of the two hadronic systems in the χ̃−
1 and χ̃+

1 decays,
defined in the laboratory frame and in the rest frame of
the charginos, respectively; .p(.̄p) and .p∗( .̄p∗) are the corre-
sponding momenta. ϑ is the angle between the momenta
of the two hadronic systems in the laboratory frame; the
angle between the vectors in the transverse plane is given
by ∆φ∗ = 2π − (φ∗ + φ̄∗) for the reference frames defined
earlier. The terms in (24) can therefore be measured di-
rectly. The observables P, P̄, Q and Y enter into the cross
section together with the spin analysis-power κ(κ̄). CP–
invariance leads to the relation κ̄ = −κ. Therefore, taking
the ratios PP̄/Q and PP̄/Y, these unknown quantities
can be eliminated so that the two ratios reflect unambigu-
ously the properties of the chargino system, not affected
by the neutralinos. It is thus possible to study the chargino
sector in isolation by measuring the mass of the lightest
chargino, the total production cross section and the spin(–
spin) correlations.

Since the polarization P is odd under parity and
charge–conjugation, it is necessary to identify the chargino
electric charges in this case. This can be accomplished by
making use of the mixed leptonic and hadronic decays of
the chargino pairs. On the other hand, the observables Q
and Y are defined without charge identification so that
the dominant hadronic decay modes of the charginos can
be exploited.

4 Masses, mixing angles and couplings

Before the strategies for measuring the masses, mixing
angles and the couplings are presented in detail, a few

3 The neutralino mass which enters this analysis, can be pre-
determined in a model–independent way from the endpoints of
the chargino decay spectra.

general remarks on the structure of the chargino system
may render the techniques more transparent.

(i) The right–handed cross sections σR do not involve the
exchange of the sneutrino. They depend only, in symmet-
ric form, on the mixing parameters cos 2φL and cos 2φR.
(ii) The left–handed cross sections σL and the transverse
cross section σT depend on cos 2φL,R, the sneutrino mass
and the eν̃W̃ Yukawa coupling. Thus the sneutrino mass
and the Yukawa coupling can be determined from the
left-handed and transverse cross sections. [If the sneutrino
mass is much larger than the collider energy, only the ratio
of the Yukawa coupling over the sneutrino mass squared
(g2

W̃
/m2

ν̃) can be measured by this method [18].]

The cross sections σL, σR and σT are binomials in
the [cos 2φL, cos 2φR] plane. If the two–chargino model is
realized in nature, any two contours, σL and σR for exam-
ple, will at least cross at one point in the plane between
−1 ≤ cos 2φL, cos 2φR ≤ +1. However, the contours, be-
ing ellipses or hyperbolae, may cross up to four times.
This ambiguity can be resolved by measuring the third
physical quantity, σT for example. The measurement of
σT is particularly important if the sneutrino mass is un-
known. While the curve for σR is fixed, the curve for σL

will move in the [cos 2φL, cos 2φR] plane with changing
mν̃ . However, the third curve will intersect the other two
in the same point only if the mixing angles as well as the
sneutrino mass correspond to the correct physical values.

The numerical analyses presented below have been
worked out for the two parameter points introduced in
[19]. They correspond to a small and a large tanβ solu-
tion for universal gaugino and scalar masses at the GUT
scale:

RR1 : (tanβ,m0,M 1
2
) = ( 3, 100GeV, 200GeV)

RR2 : (tanβ,m0,M 1
2
) = (30, 160GeV, 200GeV) (29)

The CP-phase Φµ is set to zero. The induced chargino
χ̃±

1,2, neutralino χ̃0
1 and sneutrino ν̃ masses are given as

follows:

mχ̃±
1

= 128/132GeV mχ̃0
1

= 70/72GeV

mχ̃±
2

= 346/295GeV mν̃ = 166/206GeV (30)

for the two points RR1/2, respectively. The size of the
unpolarized total cross sections σ[e+e− → χ̃+

i χ̃
−
j ] as func-

tions of the collider energy is shown for two reference
points in Fig. 2. With the maximum of the cross sections in
the range of 0.1 to 0.3 pb, about 105 to 3×105 events can
be generated for an integrated luminosity

∫ L � 1 ab−1

as planned in three years of running at TESLA.
The cross sections for chargino pair–production rise

steeply at the threshold,

σ[e+e− → χ̃+
i χ̃

−
j ] ∼

√
s− (mχ̃±

i
+mχ̃±

j
)2 (31)

so that the masses mχ̃±
1
, mχ̃±

2
can be measured very accu-

rately in the production processes of the final–state pairs
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Fig. 2. The cross sections for the pro-
duction of charginos as a function of the
c.m. energy a with the RR1 set and
b with the RR2 set of the fundamen-
tal SUSY parameters
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Fig. 3. Contours of the cross sections σL{11}, σR{11} and
σT {11} in the [cos 2φL, cos 2φR] plane for the set RR1 [tanβ =
3, m0 = 100 GeV, M1/2 = 200 GeV] at the e+e− c.m. energy
of 400 GeV

{11}, {12} and {22}. Detailed experimental simulations
have shown that accuracies∆mχ̃±

1
= 40 MeV and∆mχ̃±

2
=

250 MeV can be achieved in high–luminosity threshold
scans [20].

4.1 Light chargino pair production

At an early phase of the e+e− linear collider the energy
may only be sufficient to reach the threshold of the light
chargino pair χ̃+

1 χ̃
−
1 . Nearly the entire structure of the

chargino system can nevertheless be reconstructed even
in this case.

4.1.1 Exploiting longitudinal
and transverse beam polarization

By analyzing the {11} mode in σL{11}, σR{11}, the mix-
ing angles cos 2φL and cos 2φR can be determined up to at
most a four–fold ambiguity if the sneutrino mass is known
and the Yukawa coupling is identified with the gauge cou-
pling. The ambiguity can be resolved by adding the infor-
mation from σT {11}. This is demonstrated4 in Fig. 3 for
the reference point RR1 at the energy

√
s = 400 GeV.

Moreover, the additional measurement of the transverse
cross section can be exploited to determine the sneutrino
mass. While the right–handed cross section σR does not
depend on mν̃e , the contours σL, σT move uncorrelated
in the [cos 2φL, cos 2φR] plane until the correct sneutrino
mass is used in the analysis. The three contour lines in-
tersect exactly in one point of the plane only if all the
parameters correspond to the correct physical values.

4.1.2 Chargino polarization

Without longitudinal and transverse beam polarizations,
the polarization of the charginos in the final state and
their spin–spin correlations can be used to determine the
mixing angles cos 2φL and cos 2φR.

The observables P, P̄, Q and Y enter into the cross
section together with the spin analysis-power where κ̄ =
−κ in CP–invariant theories. Therefore, taking the ratios
P2/Q and P2/Y, these unknown quantities can be elim-
inated so that the two ratios reflect unambiguously the
properties of the chargino system, not affected by the neu-
tralinos. It is thus possible to study the chargino sector in
isolation by measuring the mass of the lightest chargino,
the total production cross section and the spin(–spin) cor-
relations. The energy dependence of the two ratios P2/Q
and P2/Y is shown in Fig. 4; the same parameters are cho-
sen as in the previous figures. The two ratios are sensitive
to the quartic charges at sufficiently large c.m. energies

4 With event numbers of order 105, statistical errors are at
the per–mille level.
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Fig. 4. The energy dependence of
the ratios P2/Q and P2/Y: solid line
for the set RR1 [tanβ = 3, m0 =
100 GeV, M1/2 = 200 GeV] and dashed
line for the set RR2 [tanβ = 30, m0 =
160 GeV, M1/2 = 200 GeV]
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Fig. 5. Contours for the “measured values” of the total cross
section (solid line), P2/Q (dashed line), and P2/Y (dot-dashed
line) in the [cos 2φL, cos 2φR] plane for the set RR1 [tanβ =
3, m0 = 100 GeV, M1/2 = 200 GeV] at the e+e− c.m. energy
of 400 GeV

since the charginos are, on the average, unpolarized at
the threshold, c.f. (26). Note that Y vanishes for asymp-
totic energies so that an optimal energy must be chosen
not far above threshold to measure this observable.

The measurement of the cross section at an energy√
s, and either of the ratios P2/Q or P2/Y can be in-

terpreted as contour lines in the plane [cos 2φL, cos 2φR]
which intersect at large angles so that a high precision in
the resolution can be achieved. A representative example
for the determination of cos 2φL and cos 2φR is shown in
Fig. 5 for the reference point RR1. The mass of the light
chargino is set to mχ̃±

1
= 128 GeV, and the “measured”

cross section, P2/Q and P2/Y are taken to be

σ{11} = 0.32 pb , P2/Q = −0.63 , P2/Y = −6.46 (32)

at the e+e− c.m. energy
√
s = 400 GeV. The three contour

lines meet at a single point [cos 2φL, cos 2φR] =
[0.645, 0.844].

4.2 The complete chargino system

From the analysis of the complete chargino system
{χ̃+

1 χ̃
−
1 , χ̃

+
1 χ̃

−
2 , χ̃

+
2 χ̃

−
2 }, together with the knowledge of the

sneutrino mass from sneutrino pair production, the maxi-
mal information can be extracted on the basic parameters
of the electroweak SU(2) gaugino sector. Moreover, the
identity of the eν̃W̃ Yukawa coupling with the eνW gauge
coupling, which is of fundamental nature in supersymmet-
ric theories, can be tested very accurately. This analysis is
the final target of LC experiments which should provide
a complete picture of the electroweak gaugino sector with
resolution at least at the per-cent level.

The case will be exemplified for the scenario RR1 with
tanβ = 3 while the final results will also be presented
for RR2 with tanβ = 30. To simplify the picture, with-
out loss of generality, we will not choose separate energies
at the maximal values of the cross sections, but instead
we will work with a single collider energy

√
s= 800 GeV

and an integrated luminosity
∫ L = 1 ab−1. The polarized

cross sections take the following values:

σR{11} = 1.8 fb σL{11} = 787.7 fb σT {11} = 0.53 fb
σR{12} = 12.1 fb σL{12} = 106.2 fb σT {12} = 0.53 fb
σR{22} = 67.1 fb σL{22} = 337.5 fb σT {22} = 1.07 fb

(33)

Chargino pair production with right-handed electron
beams provides us with the cross sections σRi(i = {11},
{12}, {22}). Due to the absence of the sneutrino exchange
diagram, the cross sections can be expressed symmetri-
cally in the mixing parameters

c2L = cos 2φL

c2R = cos 2φR (34)

as follows:

σRi = ARi (c22L + c22R) +BRi (c2L + c2R)
+CRi

c2Lc2R +DRi

(i = {11}, {12}, {22}) (35)
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Fig. 6. Contours of the cross sec-
tions a {σR{11}, σL{11}}, b {σR{12},
σL{12}}, and c {σR{22}, σL{22}} in
the [cos 2φL, cos 2φR] plane for the
set RR1 [tanβ = 3, m0 =
100 GeV, M1/2 = 200 GeV] at the c.m.
energy of 800 GeV

The coefficients ARi
, BRi

, CRi
and DRi

involve only
known parameters, the chargino masses and the energy.
Depending on whether A2

Ri

>
< C2

Ri
/4, the contour lines for

σR{11}, σR{12}, σR{22} in the [c2L, c2R] plane (cf. Fig. 6)
are either closed ellipses or open hyperbolae5. They in-
tersect in two points of the plane which are symmetric
under the interchange c2L ↔ c2R; for RR1: [c2L, c2R]
=[0.645,0.844] and interchanged.

While the right–handed cross sections do not involve
sneutrino exchange, the cross sections for left–handed elec-
tron beams are dominated by the sneutrino contributions
unless the sneutrino mass is very large. In general, the
three observables σLi (i = {11}, {12}, {22}) exhibit quite
a different dependence on c2L and c2R. In particular, they
are not symmetric with respect to c2L and c2R so that the
correct solution for [c2L, c2R] can be singled out of the two
solutions obtained from the right-handed cross sections
(35). As before, the three observables can be expressed as

σLi
= ALi

c22L +A′
Li
c22R +BLi

c2L +B′
Li
c2R

+CLi c2Lc2R +DLi

(i = {11}, {12}, {22}) (36)

The coefficients of the linear and quadratic terms of c2L

and c2R depend on known parameters only. The shape
of the contour lines is given by the chargino masses and
the sneutrino mass, being either elliptic or hyperbolic for
ALiA

′
Li

>
< C2

Li
/4, respectively. These asymmetric equa-

tions are satisfied only by one solution, as shown in Fig. 6.
Among the two solutions obtained above from σRi only
the set [c2L, c2R] = [0.645, 0.844] satisfies (36).

At the same time, the identity between the eν̃W̃
Yukawa coupling and the eνW gauge coupling can be
tested. Varying the Yukawa coupling freely, the contour
lines σLi

move through the [c2L, c2R] plane. Only for the
supersymmetric solutions the curves σLi intersect each
other and the curves σRi in exactly one point. Combining
the analyses of σRi and σLi , the masses, the mixing pa-
rameters and the Yukawa coupling can be determined to

5 The cross section σR{12} is always represented by an el-
lipse.

quite a high precision6

mχ̃±
1

= 128 ± 0.04GeV cos 2φL = 0.645 ± 0.02

mχ̃±
2

= 346 ± 0.25GeV cos 2φR = 0.844 ± 0.005

gW̃ /gW = 1 ± 0.001 (37)

The 1σ statistical errors have been derived for an inte-
grated luminosity of

∫ L = 1 ab−1.
Thus the parameters of the chargino system, masses

mχ̃±
1

and mχ̃±
2
, mixing parameters cos 2φL and cos 2φL,

as well as the Yukawa coupling can be used to extract the
fundamental parameters of the underlying supersymmet-
ric theory with high accuracy.

5 The fundamental SUSY parameters

5.1 The χ̃±
1 base

From the analysis of the χ̃±
1 states alone, the mixing pa-

rameters cos 2φL and cos 2φR can be derived unambigu-
ously. This information is sufficient to derive the funda-
mental gaugino parameters {M2, µ, tanβ} in CP–invariant
theories up to at most a discrete two–fold ambiguity.

The solutions can be discussed most transparently by
introducing the two triangular quantities

p\q = cot(φR ∓ φL) (38)

These two quantities can be expressed in terms of the
mixing angles:

p = ±
∣∣∣∣ sin 2φL + sin 2φR

cos 2φL − cos 2φR

∣∣∣∣
q =

1
p

cos 2φL + cos 2φR

cos 2φL − cos 2φR
(39)

6 In contrast to the restricted χ̃+
1 χ̃−

1 case, it is not necessary
to use transversely polarized beams to determine this set of
parameters unambiguously. If done so nevertheless, the analy-
sis follows the same steps as discussed above. The additional
information will reduce the errors on the fundamental param-
eters.
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Apart from the overall sign ambiguity of the pair (p, q)
which can be removed by definition, the set is two–fold
ambiguous due to the unfixed relative sign between sin 2φL

and sin 2φR.
From the solutions (p, q) derived above, the SUSY pa-

rameters can be determined in the following way:

cos 2φR
>
< cos 2φL : tan \ cotβ =

p2 − q2 ± 2
√
χ2(p2 + q2 + 2 − χ2)

(
√

1 + p2 −
√

1 + q2)2 − 2χ2
⇒ tanβ >

< 1 (40)

where χ2 = m2
χ̃±

1
/m2

W . The gaugino and higgsino mass
parameters are given in terms of p and q by

M2 =
mW√

2

[
(p+ q) sinβ − (p− q) cosβ

]

µ =
mW√

2

[
(p− q) sinβ − (p+ q) cosβ

]
(41)

The parameters M2, µ are uniquely fixed if tanβ is chosen
properly. Since tanβ is invariant under pairwise reflection
of the signs in (p, q), the definition M2 > 0 can be ex-
ploited to remove this additional ambiguity.

As a result, the fundamental SUSY parameters
{M2, µ, tanβ} can be derived from the observables mχ̃±

1

and cos 2φR, cos 2φL up to at most a two–fold ambiguity.

5.2 The complete set
of the fundamental SUSY parameters

From the setmχ̃±
1,2

and cos 2φL,R of measured observables,
the fundamental supersymmetric parameters
{M2, |µ|, cosΦµ, tanβ} in CP–(non)invariant theories can
be determined unambiguously in the following way.
(i) M2, |µ|: Based on the definition M2 > 0, the gaugino
mass parameter M2 and the modulus of the higgsino mass
parameter read as follows:

M2 =
[
(m2

χ̃±
2

+m2
χ̃±

1
− 2m2

W )/2

−(m2
χ̃±

2
−m2

χ̃±
1
)(cos 2φL + cos 2φR)/4

]1/2

|µ| =
[
(m2

χ̃±
2

+m2
χ̃±

1
− 2m2

W )/2 (42)

+(m2
χ̃±

2
−m2

χ̃±
1
)(cos 2φL + cos 2φR)/4

]1/2

(ii) cos Φµ: The sign of µ in CP–invariant theories and,
more generally, the cosine of the phase of µ in CP–non-
invariant theories is determined by the χ̃±

1 , χ̃
±
2 masses and

cos 2φL,R = c2L,R

cosΦµ =
[
(m2

χ̃±
2

−m2
χ̃±

1
)2(2 − c22L − c22R)

−8m2
W (m2

χ̃±
2

+m2
χ̃±

1
− 2m2

W )
]

×
[
16m4

W − (m2
χ̃±

2
−m2

χ̃±
1
)2(c2L − c2R)2

]−1/2

×
[
4(m2

χ̃±
2

+m2
χ̃±

1
− 2m2

W )2

−(m2
χ̃±

2
−m2

χ̃±
1
)2(c2L + c2R)2

]−1/2
. (43)

(iii) tan β: The value of tanβ is uniquely determined in
terms of two chargino masses and two mixing angles:

tanβ =

√√√√4m2
W − (m2

χ̃±
2

−m2
χ̃±

1
)(cos 2φL − cos 2φR)

4m2
W + (m2

χ̃±
2

−m2
χ̃±

1
)(cos 2φL − cos 2φR)

(44)

As a result, the fundamental SUSY parameters
{M2, µ, tanβ} in CP–invariant theories, and
{M2, |µ|, cosΦµ, tanβ} in CP–noninvariant theories, can
be extracted unambiguously from the observables mχ̃±

1,2
,

cos 2φR, and cos 2φL. The final ambiguity in Φµ ↔ 2π−Φµ

in CP–noninvariant theories must be resolved by measur-
ing observables related to the normal χ̃−

1 or/and χ̃+
2 polar-

ization in non–diagonal χ̃−
1 χ̃

+
2 chargino–pair production

[13].
For illustration, the accuracy which can be expected in

such an analysis, is shown for both CP–invariant reference
points RR1 and RR2 in Table 2. If tanβ is large, this
parameter is difficult to extract from the chargino sector.
Since the chargino observables depend only on cos 2β, the
dependence on β is flat for 2β → π so that (44) is not very
useful to derive the value of tanβ due to error propagation.
A significant lower bound can be derived nevertheless in
any case.

5.3 Two–state completeness relations

The two–state mixing of charginos leads to sum rules for
the chargino couplings. They can be formulated in terms
of the squares of the bilinear charges, i.e. the elements
of the quartic charges. This follows from the observation
that the mixing matrix is built up by trigonometric func-
tions among which many relations are valid. From evalu-
ating these sum rules experimentally, it can be concluded
whether the two–chargino system {χ̃±

1 , χ̃
±
2 } forms a closed

system, or whether additional states, at high mass scales,
mix in.

The following general sum rules can be derived for the
two–state charginos system at tree level:∑

i,j=1,2

|Qαβ |2{ij} = 2 (|Dα|2 + |Fα|2)

(αβ) = (LL,RL,RR) (45)

The right–hand side is independent of any supersymmet-
ric parameters, and it depends only on the electroweak pa-
rameters sin2 θW ,mZ and on the energy, cf. (13). Asymp-
totically, the initial energy dependence and the mZ de-
pendence drop out. The corresponding sum rule for the
mixed left–right (LR) combination,∑

i,j=1,2

|QLR|2{ij} = 2(|D′
L|2 + |F ′

L|2) (46)



S.Y. Choi et al.: Reconstructing the chargino system at e+e− linear colliders 545

Table 2. Estimate of the accuracy with which the parameters M2, µ, tanβ
can be determined, including sgn(µ), from chargino masses and production
cross sections; errors at the 1σ level are statistical only

RR1 RR2
theor. value fit value theor. value fit value

M2 152 GeV 152 ± 1.75 GeV 150 GeV 150 ± 1.2 GeV
µ 316 GeV 316 ± 0.87 GeV 263 GeV 263 ± 0.7 GeV

tanβ 3 3 ± 0.69 30 > 20.2

involves the sneutrino mass and Yukawa coupling.
The validity of these sum rules is reflected in both the

quartic charges and the production cross sections. How-
ever, due to mass effects and the t–channel sneutrino ex-
change, it is not straightforward to derive the sum rules
for the quartic charges and the production cross sections
in practice. Only asymptotically at high energies the sum
rules (45) for the charges can be transformed directly into
sum rules for the associated cross sections:

∑
i,j=1,2

σL,R{ij} � 16πα2

3s
(|DL,R|2 + |FL,R|2) (47)

For non–asymptotic energies the fact that all the phys-
ical observables are bilinear in cos 2φL and cos 2φR, en-
ables us nevertheless to relate the cross sections with the
set of the six variables .z = {1, c2L, c2R, c

2
2L, c

2
2R,

c2Lc2R}. For the sake of simplicity we restrict ourselves to
the left and right–handed cross sections. We introduce the
generic notation .σ for the six cross sections σR{ij} and
σL{ij}:

.σ =
{
σR{11}, σR{12}, σR{22},

σL{11}, σL{12}, σL{22}
}

(48)

Each cross section can be decomposed in terms of c2L and
c2R by noting that

σi =
6∑

j=1

fij [m2
χ̃±

1,2
,m2

ν̃ ] zj (49)

The matrix elements fij can easily be derived from Table 1
together with (13-16). Since the observables σR do not in-
volve sneutrino contributions, the corresponding functions
fij do not depend on the sneutrino mass. The 6×6 matrix
fij relates the six left/right–handed cross sections and the
six variables zi. Inverting the matrix gives the expressions
for the variables zi in terms of the observables. Since the
variables zi are not independent, we obtain several non–
trivial relations among the observables of the chargino sec-
tor:

z1 = 1 : f−1
1j σj = 1 (50)

z4 = z2
2 : f−1

4j σj =
[
f−1
2j σj

]2
(51)

z5 = z2
3 : f−1

5j σj =
[
f−1
3j σj

]2
(52)

z6 = z2z3 : f−1
6j σj = f−1

2j f
−1
3k σjσk (53)

where summing over repeated indices is understood. The
failure of saturating any of these sum rules by the mea-
sured cross sections would signal that the chargino two–
state {χ̃±

1 , χ̃±
2 } system is not complete and additional

states mix in.

6 Conclusions

We have analyzed in this report how the parameters of
the chargino system, the chargino masses mχ̃±

1,2
and the

size of the wino and higgsino components in the chargino
wave–functions, parameterized by the two mixing angles
φL and φR, can be extracted from pair production of the
chargino states in e+e− annihilation. Three production
cross sections χ̃+

1 χ̃
−
1 , χ̃+

1 χ̃
−
2 , χ̃+

2 χ̃
−
2 , for left– and right–

handedly polarized electrons give rise to six independent
observables. The method is independent of the chargino
decay properties, i.e. the analysis is not affected by the
structure of the neutralino sector which is generally very
complex in supersymmetric theories while the chargino
sector remains generally isomorphic to the minimal form
of the MSSM.

The measured chargino masses mχ̃±
1,2

and the two mix-
ing angles φL and φR allow us to extract the fundamental
SUSY parameters {M2, µ, tanβ} in CP–invariant theories
unambiguously; in CP–noninvariant theories the modulus
of µ and the cosine of the phase can be determined, leaving
us with just a discrete two–fold ambiguity φµ ↔ 2π − φµ

which can be resolved by measuring the sign of observables
associated with the normal χ̃±

1,2 polarizations.
Sum rules for the production cross sections can be used

at high energies to check whether the two–state chargino
system is a closed system or whether additional states mix
in from potentially high scales.

To summarize, the measurement of the processes
e+e− → χ̃+

i χ̃
−
j [i, j = 1, 2] carried out with polarized

beams, leads to a complete analysis of the basic SUSY
parameters {M2, µ, tanβ} in the chargino sector. Since
the analysis can be performed with high precision, this
set provides a solid platform for extrapolations to scales
eventually near the Planck scale where the fundamental
supersymmetric theory may be defined.
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Schröder, Nucl. Phys. B 388 (1992) 53

13. Y. Kizukuri, N. Oshimo, Proceedings of the Workshop
on e+e− Collisions at 500 GeV: The Physics Potential,
Munich-Annecy-Hamburg 1993, DESY 93-123C, ed. P.
Zerwas; T. Ibrahim, P. Nath, Phys. Rev. D 57 (1998) 478;
M. Brhlik, G.L. Kane, Phys. Lett. B 437 (1998) 437; M.
Brhlik, G.J. Good, G.L. Kane, Phys. Rev. D 59 (1999)
115004

14. For recent developments, see J.-L. Kneur, G. Moultaka,
Phys. Rev. D 59 (1999) 015005; G. Moortgat–Pick, A.
Bartl, H. Fraas, W. Majerotto, DESY Report 00–002

15. M.A. Diaz, S.F. King, D.A. Ross, Nucl. Phys. B 529
(1998) 23; M.A. Diaz, hep–ph/9910445

16. L.M. Sehgal, P.M. Zerwas, Nucl. Phys. B 183 (1981) 417
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